Electrification of energy supply - sector coupling and digitization as drivers of the transformation

Prof. Dr. Kurt Rohrig,
Deputy Director and Scientific Program Director

Fraunhofer IEE

8th German-Norwegian Energy Conference
Power to Change – governments, climate & mobility
Fraunhofer-Gesellschaft conducts applied research and comprises 66 institutes across Germany

- Europe’s largest applied research organisation
- Undertakes research for direct use by private and public enterprises, providing a wide range of benefits to society
- 80 research units, including 66 Fraunhofer Institutes
- Staff of around 24,500
- Annual research budget of around 2.1 bnEUR
Our service portfolio deals with **current and future challenges** faced by the **energy industry** and **energy system technology** issues.

We explore and develop **solutions for** sustainably **transforming renewable based energy systems**.

- Personal: approx. 310
- Annual budget: approx. 22 Mio EUR
- Director: Prof. Dr. Clemens Hoffmann

www.iee.fraunhofer.de
Fraunhofer has several locations and contact possibilities worldwide.
Progress of Renewable Energy Use

In 2017, the total renewable energy supplied the largest share of the gross power consumption (33%) and thus more than nuclear and lignite power plants!!!
The German energy transition process is now in phase II

- The RES power has reached a system-determining magnitude (> 100GW)
- The general transformation of the entire energy supply system (electricity, heat, traffic) started
- Further installation, digitization and sector coupling will determine this phase

Required measures for the further (successful) transformation are

- Technological development
- Economics
- Political stability
- Acceptance and participation
Climate Protection Goals 2050 – 80% and 95%

Complying with COP21 Paris agreement requires emission reductions in the range of 80-95% vs. 1990 levels, implying consequences for the energy sector:

- **Challenge**: Coupling of energy sectors with key technologies to use renewable power generation (i.e. wind and solar) as the main primary energy source in the future.

- **Solution**:
 - **Power**
 - **Heat**
 - **Transport**

COP21: European Targets

A consistent implementation of the objectives of Paris leads to more extensive installation targets for renewable energies
95%-Scenario Electricity Generation and Demand in Germany 2050

Quelle: Fraunhofer IWES (2017): „Analyse eines europäischen -95%-Klimazielszenarios über mehrere Wetterjahre“
Electricity Generation and Demand in Germany 2050

Source: Fraunhofer IWES (2017): „Analyse eines europäischen -95%-Klimazielszenarios über mehrere Wetterjahre“
Digitization: Challenges and Opportunities

Trends in the energy industry
- Decarbonisation
- Liberalisation
- Internationalization
- Renewable Energy
- Decentralization
- Flexibility
- Sector Coupling

IT-Trends
- Big-Data
- IoT
- Digital Twins
- KI/machine.learning
- Blockchain
- Cloud Technology
- Industry 4.0
- IDS, EDS

Raise synergies and efficiency, anticipate IT innovation and adapt IT trends to energy industry issues.
Digitization in the Energy System
German Energy Supply – Today and Tomorrow

Current situation renewable energies
- >100 GW for 1.6 million power generators
- Most facilities without management
- Few power generators with remote meter access
- Separate consideration of different sectors (Power, Gas, Heat, Transport, Water)
- Limits of stability will be reached

Renewable energies in “2050“
- More than 250 GW and 5 million power units
- Complete supply from renewables – economically and secure
- All power generators with active management
- Smart-Grid / -Market fully applied
- Consideration of different sectors together

Installed capacity
Number of Units

Solar
Wind
Biomasse

>100 GW
1.6 million devices

Installed capacity
Number of Units

> 250 GW
> 5 Million

“2050“

© Fraunhofer
Key Elements of Energy Transition

- Power Forecasts
- Virtual Power Plants
- System Services by RES
- Sector Coupling - Smart Demand, Smart Cities, Smart Home
- Grid Planning and Operation
Forecast-Tools: From R&D to application – EWELine/GridCast

- observations
- assimilation
- weather forecast
- post processing
- power forecasts
- post processing

assimilation of power data
- PV and wind turbine

ensemble data assimilation

Improved model physics
- turbulence model
- aerosol optical thickness

MOS MiX
- A-priori estimation
 - Low stratus
 - Low pressure areas

Shortest term forecast

Day-ahead forecast

Grid-node forecast

Regional forecast

Probabilistic forecasts
Big Data, ML: Concept mobile sensors

Mobile Data → Weather Map → Plant-Model → Solar-Power

Vehicle Data
- solar radiation
- temperatur
- position
- direction

Aggregated meteorological information
- radiation
- temperatur

Simulated solar power production from weather map for single reference plants

Production now-cast from simulated solar power of single plants
VPP: Central Tool for the Energy System Transition

Support of:

- **Energy generation by demand**: using intelligent management
- **Compliance with the Schedule**: internal automatic Redispatch
- **Reduce the risk**: smoothing effects by aggregation of renewable energies
- **Market access**: for every type of facility (bridge between Smart-Grid / Market)
- **Scalability and Aggregation**: Any kind of facility, installed capacity, number of plants
- **Standardized protocols**: efficient communication architecture
- **Sector transcending management**:

 » **power plant type of the future**«

Secure system integration renewable energies as substitution of the large scale power plants
VPP: Manage Renewable Energy and Power

- Plant Operator
- VPP Operator
- Marketers
- Direct-Marketers VPP

Interfaces:
- Prices and Prediction data
- Portfolio-Commitment-Optimisation
- Optimal Schedule

Central Controller
- DV Port
- Communication Box

Plant Communication

VPP

Communication and Control Power Request
System Service: Voltage Support by Wind Farms

Online Grid information

Online power forecast

Set point to the local wind farm controller

Input WCMS

Wind-leistungs-prognose

Netzleitsystem

Ist-Werte Netz

Soll-Werte Parameter

Wetterdaten

Online power forecast

Set point to the local wind farm controller
System Service: Frequency Support – Control Power Provision

Demonstration: Primary and Secondary Reserve by Wind Farms
Sector Coupling: Sustainable Urban Energy Concepts with RES

Structure of the Energy System Frankfurt/M 2050

Based on 95% renewable energy sources regionally generated

Efficiency: Reduction of the energy demand from 2012 to 2050
From fossil fuels + electr. to electric vehicles only

- 79%
- 64%
- 72%
- 53%
- 78%
- 11%
- 10%

Total generation: 9759 GWh
Sector Coupling: Strategic Levels

Region/City

City Quarter

Local/Building
Sector Coupling: Approach on District Level

- Power-Heat System
 - Load management and renewable energies
- Innovative heat supply
 - Low temperature district heating
 - Integration of renewable and waste energies
Sector Coupling: Smart Home / Prosumer

Local Energy Management – Regulation and Incentives
European energy scenarios consider large-scale energy exchange and transport.
North Sea Offshore Network Initiative - NSON

Initial pre-project and feasibility phase

- Regulators and authorities

- NSON project(s) on national level with international cooperation and exchange

- Manufacturers, TSOs, renewable operators, ...

Pending phase

- NSON Initiative Framework

- Berlin Model type projects?

- Eranet Plus type project?

- H2020 type project?

Next phase

- Large-scale RD&D NSON project leading to full-scale commercial operation

NSON project opportunities need to be discussed to go ahead with industry involvement
Initial grid configuration shows realised and planned interconnector projects in Northern Europe – “Meshed Grid” shows investments in both interconnector and integrated offshore wind connections.
Conclusion and Outlook

- A safe and stable 100% RES power supply is technically feasible if renewable energy generation, storage and flexible demand interact intelligent.

- Precise wind and solar power prediction will reduce efforts for risk management and balancing.

- Wind power plants and PV-plants are able to provide control power.

- Renewable Energy VPP will support power plant operators, market players, and grid operators.

- Digitization will be the driver for advanced solutions and the link between technical and business requirements.

- Sector-coupling and urban energy management are crucial for the transition of the energy supply system.

- Grid planning and operation on European level is crucial for the energy supply with high shares of RES.
Thank you for your attention

Prof. Dr.-Ing. Kurt Rohrig
Deputy Director of the Institute
Director of Business Unit Energy Economics
Director of Energy Economics and Grid Operation Division
Fraunhofer Institute for Energy Economics
and Energy System Technology IEE

Koenigstor 59 | 34119 Kassel / Germany
Phone +49 561 7294-330
kurt.rohrig@iee.fraunhofer.de